Meta Batch-Instance Normalization for Generalizable Person Re-Identification Choi et al., CVPR 2021.

Presenter: Yoonki Cho

Recap: Reducing Domain Gap by Reducing Style Bias (CVPR 21, oral)

- Style-Agnostic Network (SagNet)
 - Goal: Content-biased network → Robust under domain shifts.
 - How? → Randomly swap style codes between images.

Contents

- 1. Introduction
- 2. Backgrounds
- 3. Method
- 4. Experiments
- 5. Quiz

Introduction

Motivation & Research Goal

Generalizable Person Re-identification

- Generalizable person re-ID is a "domain generalization (DG)" problem for person retrieval.
 - Training (Source) domain ≠ Testing (Target) domain.
- Style difference between domains makes a domain gap.
 - o Season (Weather), Viewpoint, Clothing, etc.

Generalizable Person Re-identification

- Many works employ an **instance normalization (IN)** to reduce style variations.
 - o However, it often loses discriminative information.
 - o Also, it requires a lot of trial and error.

IBN-Net. ECCV 18

DualNorm, BMVC 19

Research Goal

- Goal: Solve a generalizable person re-ID using style normalization
 - o Preserving discriminative information.
 - O Without a trial and error manner.
- To achieve the goal, the proposed method
 - o Mimics unsuccessful generalization scenarios in a meta-learning manner.
 - o Learn a generalization ability from unsuccessful generalization episodes.
 - \circ Utilizes both IN and BN \rightarrow learnable batch-instance normalization (BIN).

Research Goal

- Goal: Solve a generalizable person re-ID using style normalization
 - o Preserving discriminative information.
 - Without a trial and error manner. ←
- To achieve the goal, the proposed method
 - o Mimics unsuccessful generalization scenarios in a meta-learning manner.
 - Learn a generalization ability from unsuccessful generalization episodes.
 - \circ Utilizes both IN and BN \rightarrow learnable batch-instance normalization (BIN).

Backgrounds

Batch-Instance Normalization (BIN)

Batch-Instance Normalization (BIN)

- Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks. In NeurIPS 2018.
 - o BIN learns to selectively normalize a disturbing style while preserving an useful style.
 - \circ The learnable parameter $\rho \in [0,1]^C$ controls how much to normalize style for each channel

Method

Meta Batch-Instance Normalization (MetaBIN)

Meta Batch-Instance Normalization (MetaBIN)

• The paper proposes a novel generalizable re-ID framework called MetaBIN that prevents overfitting to given source domain styles.

• The proposed method selectively normalize disturbing style by unsuccessful generalization scenarios in a meta-learning manner.

• To diversify the virtual simulations (i.e., unsuccessful generalization scenarios), the paper proposes **meta-train loss**.

Experimental Observation

- Train a model with only BNs across multiple source domains.
- Under-style-normalization by BN.
 - When unexpected styles are given from unseen target domain, the model often fails to distinguish inputs' IDs.

Experimental Observation

- Train a model with only INs across multiple source domains.
- Over-style-normalization by IN.
 - o It can remove unseen styles in the target domain.
 - o However, it can also removes some discriminative information for re-identifying a person.

Meta Batch-Instance Normalization (MetaBIN)

• To address under- and over-style-normalization problems, the proposed method utilizes a batch-instance normalization (BIN).

$$\mathbf{y} = \rho \left(\gamma_B \cdot \hat{\mathbf{x}}_B + \beta_B \right) + (1 - \rho) \left(\gamma_I \cdot \hat{\mathbf{x}}_I + \beta_I \right)$$
Batch-normalized
feature map
Style-normalized
feature map

- So how can we train a learnable balancing parameter $\rho \in [0, 1]^C$?
 - \circ If we directly train ρ with a end-to-end manner, it can easily overfit to the source domain's style.

- The proposed method trains a learnable balancing parameter ρ using a meta-learning pipeline.
- Separate the training procedure to two episodes, then alternate both episodes.
 - o Base model (Feature extractor) training.
 - o Balancing parameter training.
- In the balancing parameter training, it mimics unsuccessful generalization scenarios.
 - Learn a generalization from generalization episodes.

- Base model update (Train a feature extractor and a classifier).
 - Utilizes cross-entropy loss and triplet loss.
 - Learn to re-identify a person.

Algorithm 1 MetaBIN

Input: Source domains $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K\}$, pre-trained parameters θ_f , hyperparameters α, β, γ .

Output: Feature extractor $f_{\theta}(\cdot)$, classifier $g_{\phi}(\cdot)$

- 1: Initialize parameters θ_{ρ} , ϕ
- 2: **for** ite **in** iterations **do**

4: Sample a mini-batch \mathcal{X}_B from \mathcal{D} .

5:
$$\mathcal{L}_{\text{base}}(\mathcal{X}_B; \theta, \phi) = \mathcal{L}_{\text{ce}}(\mathcal{X}_B; \theta, \phi) + \mathcal{L}_{\text{tr}}(\mathcal{X}_B; \theta)$$

6:
$$(\theta_f, \phi) \leftarrow (\theta_f - \alpha \nabla_{\theta_f} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi), \\ \phi - \alpha \nabla_{\phi} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi))$$

7: **Domain-level sampling:**

8: Split
$$\mathcal{D}$$
 as $(\mathcal{D}_{mtr} \cap \mathcal{D}_{mte} = \emptyset, \mathcal{D}_{mtr} \cup \mathcal{D}_{mte} = \mathcal{D})$

10: Sample a mini-batch \mathcal{X}_S from \mathcal{D}_{mtr} .

11:
$$\mathcal{L}_{mtr}(\mathcal{X}_S; \theta) = \mathcal{L}_{scat}(\mathcal{X}_S; \theta) + \mathcal{L}_{shuf}(\mathcal{X}_S; \theta) + \mathcal{L}_{tr}(\mathcal{X}_S; \theta)$$

12:
$$\theta_{\rho}' = \theta_{\rho} - \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$$

14: Sample a mini-batch \mathcal{X}_T from \mathcal{D}_{mte} .

15:
$$\theta_{\rho} \leftarrow \theta_{\rho} - \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$$

- Domain-level sampling
- Split the given domains to
 - \circ meta-train domains \mathcal{D}_{mtr} .
 - \circ meta-test domains \mathcal{D}_{mte} .
- Now, we can mimic a domain generalization scenario!
 - \circ Train on \mathcal{D}_{mtr} , then generalize to \mathcal{D}_{mte} .

Algorithm 1 MetaBIN

Input: Source domains $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K\}$, pre-trained parameters θ_f , hyperparameters α, β, γ .

- 1: Initialize parameters θ_{ρ} , ϕ
- 2: for ite in iterations do
- 3: **Base model update**: // Eq. (2)-Eq. (5)
- 4: Sample a mini-batch \mathcal{X}_B from \mathcal{D} .
- 5: $\mathcal{L}_{\text{base}}(\mathcal{X}_B; \theta, \phi) = \mathcal{L}_{\text{ce}}(\mathcal{X}_B; \theta, \phi) + \mathcal{L}_{\text{tr}}(\mathcal{X}_B; \theta)$
- 6: $(\theta_f, \phi) \leftarrow (\theta_f \alpha \nabla_{\theta_f} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi), \\ \phi \alpha \nabla_{\phi} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi))$
- 7: **Domain-level sampling**:
- 8: Split \mathcal{D} as $(\mathcal{D}_{mtr} \cap \mathcal{D}_{mte} = \emptyset, \mathcal{D}_{mtr} \cup \mathcal{D}_{mte} = \mathcal{D})$
- 9: **Meta-train**: // Eq. (6)-Eq. (9)
- 10: Sample a mini-batch \mathcal{X}_S from \mathcal{D}_{mtr} .
- 11: $\mathcal{L}_{mtr}(\mathcal{X}_S; \theta) = \mathcal{L}_{scat}(\mathcal{X}_S; \theta) + \mathcal{L}_{shuf}(\mathcal{X}_S; \theta) + \mathcal{L}_{tr}(\mathcal{X}_S; \theta)$
- 12: $\theta_{\rho}' = \theta_{\rho} \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$
- 13: **Meta-test**: // Eq. (10)
- 14: Sample a mini-batch \mathcal{X}_T from \mathcal{D}_{mte} .
- 15: $\theta_{\rho} \leftarrow \theta_{\rho} \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$

- Domain-level sampling
- Split the given domains to
 - \circ meta-train domains \mathcal{D}_{mtr} .
 - \circ meta-test domains \mathcal{D}_{mte} .
- Now, we can mimic a domain generalization scenario!
 - \circ *Train on* \mathcal{D}_{mtr} , then generalize to \mathcal{D}_{mte} .

Algorithm 1 MetaBIN

Input: Source domains $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K\}$, pre-trained parameters θ_f , hyperparameters α, β, γ .

- 1: Initialize parameters θ_{ρ} , ϕ
- 2: for ite in iterations do
- 3: **Base model update**: // Eq. (2)-Eq. (5)
- 4: Sample a mini-batch \mathcal{X}_B from \mathcal{D} .
- 5: $\mathcal{L}_{\text{base}}(\mathcal{X}_B; \theta, \phi) = \mathcal{L}_{\text{ce}}(\mathcal{X}_B; \theta, \phi) + \mathcal{L}_{\text{tr}}(\mathcal{X}_B; \theta)$
- 6: $(\theta_f, \phi) \leftarrow (\theta_f \alpha \nabla_{\theta_f} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi), \\ \phi \alpha \nabla_{\phi} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi))$
- 7: **Domain-level sampling**:
- 8: Split \mathcal{D} as $(\mathcal{D}_{mtr} \cap \mathcal{D}_{mte} = \emptyset, \mathcal{D}_{mtr} \cup \mathcal{D}_{mte} = \mathcal{D})$
- 9: **Meta-train**: // Eq. (6)-Eq. (9)
- 10: Sample a mini-batch \mathcal{X}_S from \mathcal{D}_{mtr} .
- 11: $\mathcal{L}_{mtr}(\mathcal{X}_S;\theta) = \mathcal{L}_{scat}(\mathcal{X}_S;\theta) + \mathcal{L}_{shuf}(\mathcal{X}_S;\theta) + \mathcal{L}_{tr}(\mathcal{X}_S;\theta)$
- 12: $\theta_{\rho}' = \theta_{\rho} \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$
- 13: **Meta-test**: // Eq. (10)
- 14: Sample a mini-batch \mathcal{X}_T from \mathcal{D}_{mte} .
- 15: $\theta_{\rho} \leftarrow \theta_{\rho} \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$

- Domain-level sampling
- Split the given domains to
 - \circ meta-train domains \mathcal{D}_{mtr} .
 - \circ meta-test domains \mathcal{D}_{mte} .
- Now, we can mimic a domain generalization scenario!
 - \circ Train on \mathcal{D}_{mtr} , then generalize to \mathcal{D}_{mte} .

Algorithm 1 MetaBIN

Input: Source domains $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K\}$, pre-trained parameters θ_f , hyperparameters α, β, γ .

- 1: Initialize parameters θ_{ρ} , ϕ
- 2: for ite in iterations do
- 3: **Base model update**: // Eq. (2)-Eq. (5)
- 4: Sample a mini-batch \mathcal{X}_B from \mathcal{D} .
- 5: $\mathcal{L}_{\text{base}}(\mathcal{X}_B; \theta, \phi) = \mathcal{L}_{\text{ce}}(\mathcal{X}_B; \theta, \phi) + \mathcal{L}_{\text{tr}}(\mathcal{X}_B; \theta)$
- 6: $(\theta_f, \phi) \leftarrow (\theta_f \alpha \nabla_{\theta_f} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi), \\ \phi \alpha \nabla_{\phi} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi))$
- 7: **Domain-level sampling:**
- 8: Split \mathcal{D} as $(\mathcal{D}_{mtr} \cap \mathcal{D}_{mte} = \emptyset, \mathcal{D}_{mtr} \cup \mathcal{D}_{mte} = \mathcal{D})$
- 9: **Meta-train**: // Eq. (6)-Eq. (9)
- 10: Sample a mini-batch \mathcal{X}_S from \mathcal{D}_{mtr} .
- 11: $\mathcal{L}_{mtr}(\mathcal{X}_S; \theta) = \mathcal{L}_{scat}(\mathcal{X}_S; \theta) + \mathcal{L}_{shuf}(\mathcal{X}_S; \theta) + \mathcal{L}_{tr}(\mathcal{X}_S; \theta)$
- 12: $\underline{\theta_{\rho}'} = \theta_{\rho} \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$
- 13: **Meta-test**: // Eq. (10)
- 14: Sample a mini-batch \mathcal{X}_T from \mathcal{D}_{mte} .
- 15: $\theta_{\rho} \leftarrow \theta_{\rho} \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$

Meta-train stage

- In this stage, MetaBIN trains the balancing parameter ρ to mimic unsuccessful generalization scenarios.
- Unsuccessful generalization scenarios = under- or over-style-normalization
- To make under-&over-style-normalization, the paper proposes the meta-train loss.

$$\mathcal{L}_{mtr}(\mathcal{X}_S;\theta) = \underbrace{\mathcal{L}_{scat}(\mathcal{X}_S;\theta) + \mathcal{L}_{shuf}(\mathcal{X}_S;\theta)}_{\text{for over-style-normalization}} + \underbrace{\mathcal{L}_{tr}(\mathcal{X}_S;\theta)}_{\text{for under-style-normalization}}.$$

K_S : number of domains in a mini-batch N_S^k : number of samples in domain k N_S : number of samples in a mini-batch

Meta-train stage (over-style-normalization)

• Intra-domain scatter loss: Each feature should be far from its own domain's centroid feature.

$$\mathcal{L}_{\text{scat}}(\mathcal{X}_S; \theta) = \frac{1}{N_S} \sum_{k=1}^{K_S} \sum_{i=1}^{N_S^k} cos(\boldsymbol{f}_i^k, \bar{\boldsymbol{f}}^k)$$
mean feature vector (centroid)

• Inter-domain shuffle loss: *Inter-domain features should be closer than intra-domain features*.

$$\mathcal{L}_{\text{shuf}}(\mathcal{X}_S;\theta) = \frac{1}{N_S} \sum_{i=1}^{N_S} l_s \big(d(\boldsymbol{f}_i^a, \boldsymbol{f}_i^{n-}) - d(\boldsymbol{f}_i^a, \boldsymbol{f}_i^{n+}) \big)$$
 negative sample from the inter-domain from the intra-domain

Meta-train stage (over-style-normalization)

 K_S : number of domains in a mini-batch N_S^k : number of samples in domain k

 N_S^k : number of samples in domain k

 N_S : number of samples in a mini-batch

• Intra-domain scatter lost *feature*.

 $\mathcal{L}_{ ext{sc}}$

• Inter-domain shuffle los *features*.

$$\mathcal{L}_{ ext{shuf}}(\mathcal{X}_{ ext{S}})$$

wn domain's centroid

ctor

er than intra-domain

$$f_i^{n+}$$
) negative sample om the intra-domain

SGVR Lab

Meta-train stage (under-style-normalization)

- Triplet loss for under-style-normalization
 - \circ It leads to overfitting to the styles of the meta-train domains \mathcal{D}_{mtr} .

$$\mathcal{L}_{mtr}(\mathcal{X}_S;\theta) = \mathcal{L}_{scat}(\mathcal{X}_S;\theta) + \mathcal{L}_{shuf}(\mathcal{X}_S;\theta) + \mathcal{L}_{tr}(\mathcal{X}_S;\theta).$$

$$\theta'_{\rho} = \theta_{\rho} - \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$$
 Update the balancing parameter!

Meta-test stage

- In this stage, MetaBIN mimics a domain generalization scenario.
 - \circ Evaluate the model with updated balancing parameter on meta-test domains \mathcal{D}_{mte} .
 - \circ Employ the triplet loss on a mini-batch X_T from meta-test domains \mathcal{D}_{mte} .

- Meta-update the balancing parameter to overcome the virtual simulations.
 - o Learn a generalization from unsuccessful generalization scenarios!

Summary

- MetaBIN learns the balancing parameter of BIN in a meta-learning manner.
- It mimics unsuccessful generalization scenarios in a meta-learning manner.
- It proposes a meta-train loss to induce over-/under- style-normalization.
 - Meta-train loss collapses the balancing parameter.

Algorithm 1 MetaBIN

Input: Source domains $\mathcal{D} = \{\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K\}$, pre-trained parameters θ_f , hyperparameters α, β, γ .

- 1: Initialize parameters θ_{ρ} , ϕ
- 2: for ite in iterations do
- 3: **Base model update**: // Eq. (2)-Eq. (5)
- 4: Sample a mini-batch \mathcal{X}_B from \mathcal{D} .
- 5: $\mathcal{L}_{\text{base}}(\mathcal{X}_B; \theta, \phi) = \mathcal{L}_{\text{ce}}(\mathcal{X}_B; \theta, \phi) + \mathcal{L}_{\text{tr}}(\mathcal{X}_B; \theta)$
- 6: $(\theta_f, \phi) \leftarrow (\theta_f \alpha \nabla_{\theta_f} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi), \\ \phi \alpha \nabla_{\phi} \mathcal{L}_{base}(\mathcal{X}_B; \theta_f, \theta_\rho, \phi))$
- 7: **Domain-level sampling:**
- 8: Split \mathcal{D} as $(\mathcal{D}_{mtr} \cap \mathcal{D}_{mte} = \emptyset, \mathcal{D}_{mtr} \cup \mathcal{D}_{mte} = \mathcal{D})$
- 9: **Meta-train**: // Eq. (6)-Eq. (9)
- 10: Sample a mini-batch \mathcal{X}_S from \mathcal{D}_{mtr} .
- 11: $\mathcal{L}_{mtr}(\mathcal{X}_S; \theta) = \mathcal{L}_{scat}(\mathcal{X}_S; \theta) + \mathcal{L}_{shuf}(\mathcal{X}_S; \theta) + \mathcal{L}_{tr}(\mathcal{X}_S; \theta)$
- 12: $\theta_{\rho}' = \theta_{\rho} \beta \nabla_{\theta_{\rho}} \mathcal{L}_{mtr}(\mathcal{X}_S; \theta_f, \theta_{\rho})$
- 13: **Meta-test**: // Eq. (10)
- 14: Sample a mini-batch \mathcal{X}_T from \mathcal{D}_{mte} .
- 15: $\theta_{\rho} \leftarrow \theta_{\rho} \gamma \nabla_{\theta_{\rho}} \mathcal{L}_{tr}(\mathcal{X}_T; \theta_f, \theta_{\rho}')$

Experiments

Comparison with SOTAs

- Multi-source domain generalization
 - o Learn from multiple domains, then generalize to the other single domain.

Table 1. Performance (%) comparison with the state-of-the-arts on the large-scale DG Re-ID benchmark, where '†' is based on ResNet-50.

	Large-scale domain generalization Re-ID (multi-source DG)																	
Method	Ave	rage	Targ	get: VII	PeR (V)	[12]	Tai	rget: PR	CID (P)	[15]	Tar	get: GF	RID (G)	[25]	Tar	get: i-L	IDS (I)	[44]
	R-1	mAP	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP
DIMN [36]	47.5	57.9	51.2	70.2	76.0	60.1	39.2	67.0	76.7	52.0	29.3	53.3	65.8	41.1	70.2	89.7	94.5	78.4
AugMining [39]	51.8	-	49.8	70.8	77.0	-	34.3	56.2	65.7	-	46.6	67.5	76.1	-	76.3	93.0	95.3	-
Switchable (BN+IN) [27]	57.0	65.6	51.6	72.9	80.8	61.4	59.6	78.6	90.1	69.4	39.3	58.8	68.1	48.1	77.3	91.2	94.8	83.5
DualNorm [17]	57.6	61.8	53.9	62.5	75.3	58.0	60.4	73.6	84.8	64.9	41.4	47.4	64.7	45.7	74.8	82.0	91.5	78.5
DDAN [3]	59.0	63.1	52.3	60.6	71.8	56.4	54.5	62.7	74.9	58.9	50.6	62.1	73.8	55.7	78.5	85.3	92.5	81.5
DDAN [3] w/ [17]	60.9	65.1	56.5	65.6	76.3	60.8	62.9	74.2	85.3	67.5	46.2	55.4	68.0	50.9	78.0	85.7	93.2	81.2
MetaBIN (Ours)	64.7	72.3	56.9	76.7	82.0	66.0	72.5	88.2	91.3	79.8	49.7	67.5	76.8	58.1	79.7	93.3	97.3	85.5
SNR [†] [18]	57.3	66.4	52.9	-	-	61.3	52.1	-	-	66.5	40.2	-	-	47.7	84.1	-	-	89.9
DualNorm [†] [17]	62.7	-	59.4	-	-	-	69.6	-	-	-	43.7	-	-	-	78.2	-	-	-
MetaBIN [†] (Ours)	66.0	73.6	59.9	78.4	82.8	68.6	74.2	89.7	92.2	81.0	48.4	70.3	77.2	57.9	81.3	95.0	97.0	87.0

Comparison with SOTAs

- Cross-domain generalization
 - o Learn from single domains, then generalize to the other single domain.

Table 2. Performance (%) comparison with the state-of-the-arts on the cross-domain Re-ID problem.

	Cross-domain Re-ID (single-source DG)							
Method	Marke	et1501 -	→ Duke	MTMC	DukeMTMC → Market1501			
	R-1	R-5	R-10	mAP	R-1	R-5	R-10	mAP
IBN-Net [31]	43.7	59.1	65.2	24.3	50.7	69.1	76.3	23.5
OSNet [53]	44.7	59.6	65.4	25.9	52.2	67.5	74.7	24.0
OSNet-IBN [53]	47.9	62.7	68.2	27.6	57.8	74.0	79.5	27.4
CrossGrad [34]	48.5	63.5	69.5	27.1	56.7	73.5	79.5	26.3
QAConv [22]	48.8	-	-	28.7	58.6	-	-	27.2
L2A-OT [52]	50.1	64.5	70.1	29.2	63.8	80.2	84.6	30.2
OSNet-AIN [53]	52.4	66.1	71.2	30.5	61.0	77.0	82.5	30.6
SNR [18]	55.1	-	-	33.6	66.7	-	-	33.9
MetaBIN (Ours)	55.2	69.0	74.4	33.1	69.2	83.1	87.8	35.9

Ablation Study

• Meta-learning pipeline is matter.

Table 3. Ablation studies of our MetaBIN framework in the average performance on the large-scale DG Re-ID benchmark.

Method	$\mathcal{L}_{ ext{mtr}}$	\mathcal{L}_{mte}	β	R-1	mAP
BN	-	-	-	50.9	59.5
MetaBIN	$\mathcal{L}_{ ext{ce}}$	$\mathcal{L}_{ ext{ce}}$	fixed	60.6	69.4
MetaBIN	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	fixed	62.0	69.9
MetaBIN	$\mathcal{L}_{ ext{tr}}$	$\mathcal{L}_{ ext{tr}}$	fixed	62.8	70.8
MetaBIN	$\mathcal{L}_{\mathrm{tr}}, \mathcal{L}_{\mathrm{scat}}$	$\mathcal{L}_{ ext{tr}}$	fixed	63.0	71.0
MetaBIN	$\mathcal{L}_{ ext{tr}}, \mathcal{L}_{ ext{shuf}}$	$\mathcal{L}_{ ext{tr}}$	fixed	63.1	71.0
MetaBIN	$\mathcal{L}_{\mathrm{tr}}, \mathcal{L}_{\mathrm{scat}}, \mathcal{L}_{\mathrm{shuf}}$	$\mathcal{L}_{ ext{tr}}$	fixed	63.5	71.3
MetaBIN	$\mathcal{L}_{tr}, \mathcal{L}_{scat}, \mathcal{L}_{shuf}$	$\mathcal{L}_{ ext{tr}}$	cyclic	64.7	72.3

T-SNE Visualization

- BN, BIN: under-style-normalization.
- IN: over-style-normalization.

Conclusion

• The paper proposes MetaBIN that improve the model generalization ability by unsuccessful generalization scenarios in a meta-learning manner.

• Pros

- Nice observation (over-/under-style-normalization) to motivates the proposed method.
- o Intuitive method to overcome their observation.
- o Extensive experimental results (e.g., visualization, a lot of ablation study) & analysis.

• Cons

- The proposed method is quite complex.
- o Too many hyperparameters (e.g., there are three learning rate).

Thank you for listening!

Appendix

Table 4. Performance (%) comparison in a meta-learning pipeline.

Method	$\mathcal{L}_{ ext{base}}$	MLDG [19]	cyclic β	R-1	mAP
	$\mathcal{L}_{ ext{ce}}$	X	X	50.2	59.6
	$\mathcal{L}_{ ext{ce}}$	✓	X	50.5	59.2
BN	$\mathcal{L}_{ ext{ce}}$	✓	✓	52.3	60.9
DIN	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	X	X	50.9	59.5
	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	✓	X	52.2	61.2
	$\mathcal{L}_{\text{ce}}, \mathcal{L}_{\text{tr}}$	✓	✓	53.6	61.8
	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	X	X	54.8	63.1
BIN [30]	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	✓	X	57.9	65.7
	$\mathcal{L}_{ ext{ce}}, \mathcal{L}_{ ext{tr}}$	✓	✓	58.4	66.3
Meta	aBIN (repl	ace with BIN [3	30])	60.6	68.8
Meta	BIN (w/o	episode separat	ion)	60.9	69.1
	Me	etaBIN		64.7	72.3

Appendix

Table 5. Performance (%) comparison with normalization methods in DG and supervised settings, where 'S' is single normalization, 'N' is non-parametric normalization, 'P' is parametric normalization, 'BN+IN half' is a channel-wise combination of BN and IN.

Method		Large-	scale DG	Supervised (Market1501)			
		R-1	mAP	R-1	mAP		
S	BN	50.9	59.5	87.2	67.9		
3	IN	54.9	63.3	71.9	46.1		
N	DualNorm [17]	57.6	61.8	82.6	57.2		
IN	BN+IN half	56.5	65.3	79.5	53.9		
P	BIN [30]	54.8	63.1	87.5	67.8		
Г	MetaBIN (Ours)	64.7	72.3	87.9	68.5		